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Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical
evaluation of their spectrum and of external-field-induced shifts. In homonuclear molecular ions the
electric dipole E1 transitions are strongly suppressed, and of primary laser spectroscopy interest
is the electric quadrupole (E2) transition spectrum. In continuation of previous work on the H+

2

ion, we report here the results of the calculations of the rate of laser-induced electric quadrupole
transitions between a large set of ro-vibrational states of D+

2 . We also present an evaluation of the
hyperfine structure that corrects errors in previous publications in the literature. The effects of the
laser polarization in the hyperfine and Zeeman structure of the E2 transition spectrum are treated
in detail.

I. INTRODUCTION

Molecular hydrogen ions (MHIs) are three-body systems that offer the possibility for both high precision spec-
troscopy [1, 2] and accurate theoretical evaluation of the spectrum and shifts due to external fields. The comparison
of currently available and future high precision experimental and theoretical results has the potential to provide more
accurate values of fundamental constants, such as the Rydberg constant, proton-to-electron and deuteron-to-electron
mass ratios, etc. Transitions with low sensitivity to external fields are promising candidates for the search for a
time-variation of the mass ratios. For recent progress in the field and the perspectives opened, see e.g. Refs. [3, 4, 9].
Of main interest in the case of homonuclear MHIs (H+

2 , D
+
2 ) are the electric quadrupole (E2) spectra. The first

calculations in the approximation of spinless particles were performed back in 1953 by Bates and Poots [5], followed
by works of Posen et al. [6], Pilon and Baye [7], and Pilon [8]. The hyperfine structure (HFS) of the E2-spectral lines
of H+

2 was first considered in [9] and systematically investigated in [10].
In the present work, we extend the approach of [10] to the deuterium ion D+

2 . In Sec. II, we re-evaluate the HFS
of D+

2 in the Breit-Pauli approximation since the results of the preceding works [11–13] need corrections. Sec. III is
dedicated on the study of the laser-stimulated E2 transition spectrum in D+

2 with account of the HFS of the molecular
levels and the polarization of the laser source. In the final Sec. IV we summarize and discuss the results.

II. HYPERFINE STRUCTURE OF DEUTERIUM MOLECULAR ION

A. Theoretical model

The nonrelativistic Hamiltonian of the hydrogen molecular ion D+
2 is:

HNR =
p2
1

2md

+
p2
2

2md

+
p2
e

2me

+
e2

4πε0

(
− 1

r1
− 1

r2
+

1

r12

)
, (1)

where md and me are the masses of the deuterons and the electron, R1, R2, Re and p1, p2, pe are the position
and momentum vectors of the two deuterons and the electron in the center of mass frame, and r1,2 = Re−R1,2,
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r12 = R2−R1, r1,2 = |r1,2|, r12 = |r12|. We consider only Σg states of D+
2 ; in the nonrelativistic approximation

the discrete Σg states of the hydrogen isotope molecular ions are labeled with the quantum numbers of the nuclear
vibrational excitation v, of the total orbital momentum L, and of its projection on the space-fixed quantization axis Lz;
the spatial parity λ = ±1 is constrained to λ = (−1)L and will be omitted in further notations. The nonrelativistic
(Coulomb) energy levels and wave functions of D+

2 in the state |vLLz〉 are denoted by E(NR)vL and Ψ(NR)vLLz ,
respectively.
The leading-order spin effects are described by adding to HNR the pairwise spin interaction terms V of the Breit-

Pauli Hamiltonian of Ref. [14]:

H = HNR + V, V = Ved1
+ Ved2

+ Vdd, (2)

where d1 and d2 denote the two deuterium nuclei of D+
2 . We remind the explicit form of the spin interaction operators;

to comply with the established traditions we shall use atomic units h̄ = e = 4πε0 = 1 in the remainder of Sect. II A.

Ved1
= α2

[
−4π

3
µeµd

me

mp

δ(r1) (se · I1) +
(
µe −

1

2

)
1

r31
(r1 × pe) · se − µe

me

md

1

r31
(r1 × p1) · se

− me

2md

(
µd

me

mp

− me

md

)
1

r31
(r1 × p1) · I1 + µd

me

2mp

1

r31
(r1 × pe) · I1

]

+α2

[
µeµd

me

2mp

r21(se · I1)− 3(r1 · se)(r1 · I1)
r51

]
+
Qd

2a20

r21I
2
1 − 3(r1 · I1)2

r51
,

(3)

Ved2
= Ved1

(r1 → r2,p1 → p2, I1 → I2), (4)

Vdd = α2

[
−2π

3
µ2
d

m2
e

m2
p

δ(r12) (I1 · I2) +
µdm

2
e

2mpmd

(
1

r312
(r12 × p1) · I2 −

1

r312
(r12 × p2) · I1

)

+
me

2md

(
µd

me

mp

− me

md

)(
1

r312
(r12 × p1) · I1 −

1

r312
(r12 × p2) · I2

)]

+α2

[
µ2
d

m2
e

4m2
p

r212(I1 · I2)− 3(r12 · I1)(r12 · I2)
r512

]
− Qd

2a20

∑

i=1,2

r212I
2
i − 3(r12 · Ii)2

r512
.

(5)

Here I1,2 and se are the spin operators of the two deuterons and of the electron, respectively, and proper symmetrization
of the terms containing non-commuting operators is assumed; µe is the magnetic dipole moment of the electron in
units µ0 = eh̄/2me (Bohr magneton), µd is the magnetic dipole moment of the deuteron in units µN = eh̄/2mp

(nuclear magneton), a0 is the Bohr radius, and Qd is the electric quadrupole moment of the deuteron. The same
spin-interaction Hamiltonian was used in [11].
The spin interactions split the degenerate nonrelativistic energy levels E(NR)vL into a manifold of hyperfine levels

that are distinguished with additional quantum numbers (QNs) describing their “spin composition”. As evidenced in
subsection II C, the appropriate angular momentum coupling scheme for D+

2 is

I = I1 + I2, F = I+ se, J = L+ F.

Accordingly, the hyperfine states are labelled with the exact QNs of the total angular momentum J and its projection
Jz, and the approximate QNs I, F and L. Similar to Refs. [10, 11, 14], in first order of perturbation theory the
hyperfine levels E(vL)IFJJz are put in the form

E(vL)IFJJz = E(NR)vL +∆E(vL)IFJJz , (6)

where the corrections ∆E(vL)IFJJz , also referred to as ’hyperfine energies’ or ’hyperfine shifts’, are the eigenvalues of
the effective spin interaction Hamiltonian Heff . (Of course, in absence of external fields the energies are degenerate in
Jz). Since this is the point where our results disagree to some extent with the results of Refs. [11, 12], we give more
details of the calculations.

B. Effective spin Hamiltonian

We associate with the spin of the deuteron d1 the (2I1 +1)-dimensional space of the irreducible representation (I1)
of su(2) with basis vectors |I1I1z〉, I1z = −I1, . . . , I1, satisfying

Î21|I1I1z〉 = I1(I1+1)|I1I1z〉, Î1z |I1I1z〉 = I1z |I1I1z〉.



3

FIG. 1: Comparison of the hyperfine structure of the molecular ions D+
2 and H+

2 , for even L = 2n, n = 1, 2, . . . and odd
L = 2n+ 1, n = 0, 1, . . . values of L and for L=0. For 1 ≤ L ≤ 2 the states marked with dashed lines do not exist (see Tables
III,IV). For L=0 the HFS of D+

2 consists of only three states; similar to H+
2 the one with I=0 has no hyperfine shift.

Similarly, we define the sets |I2I2z〉, |sesez〉, and |LLz〉. The basis set |IFFz〉 in the resulting space of the spin
variables of all D+

2 constituents is taken in the form:

|IFFz〉 =
∑

I1zI2zsezIz

CIIz
I1I1z ,I2I2z

CFFz

IIz ,sesez
|I1I1z〉|I2I2z〉|sesez〉, (7)

here CLM
l1m1,l2m2

= 〈l1l2m1m2|LM〉 are Clebsch-Gordan coefficients. Thus, the basis set in the hyperfine manifold of

the (vL) state of D+
2 consists of the functions

Ψ
(vL)IFJJz

0 =
∑

LzFz

CJJz

LLz,FFz

Ψ(NR)vLLz |IFFz〉. (8)

We also define a basis set depending on the angular part only, which will be referred to as ”pure” states,

|LIFJJz〉 =
∑

Lz,Fz

CJJz

LLz,FFz

|LLz〉|IFFz〉. (9)

The effective spin Hamiltonian Heff is a matrix operator acting on the finite-dimensional space spanned by the vectors
|LIFJJz〉, such that

H
eff(vL)J
I′F ′,IF ≡ 〈LI ′F ′JJz|Heff |LIFJJz〉 = 〈Ψ(vL)I′F ′JJz

0 |V |Ψ(vL)IFJJz

0 〉. (10)
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I F J This work [11] [13]

(vL) = (01)
1 3/2 5/2 80.6242 80.623(4) 80.597
1 3/2 1/2 70.3510 70.355(4) 70.319
1 3/2 1/2 47.9162 47.910(3) 47.878
1 1/2 1/2 −136.4929 −136.492(7) −136.436
1 1/2 3/2 −146.9989 −146.999(8) −146.94

TABLE I: Comparison of the hyperfine energies ∆E(vL)IFJ for the (vL) = (01) state, in MHz, calculated in the present work
and in Refs. [11] and [13]. The fractional uncertainty of the results of the present work and [11, 12] is estimated as O(α2).

In absence of external fields the matrix of H
eff(vL)J
I′F ′,IF is independent of Jz. For the deuterium molecular ion Heff has

the form

Heff = E1(L · se) + E2(L · I) + E3(I · se)
+E4

(
2L2(I · se)− 3 ((L · I)(L · se) + (L · se)(L · I))

)

+E5

(
2L2(I1 · I2)− 3 ((L · I1)(L · I2) + (L · I2)(L · I1))

)

+E6

[
L2I21 −

3

2
(L · I1)− 3(L · I1)2 + L2I22 −

3

2
(L · I2)− 3(L · I2)2

]
.

(11)

Compared to the effective spin Hamiltonian for H+
2 of Ref. [10], Heff of Eq. (11) includes one additional term (with E6,

last line) that describes the effects due to the electric quadrupole moment of the nuclei and arises when averaging the
last term in Eqs. (3-5). The first four terms in Eq. (11) coincide with the first four terms in the effective Hamiltonian
of Refs. [11, 12], defined in Eqs. (12)-(15) of the former, with account of the correspondence between the notations
used: E1 = ce, E2 = cI , E3 = bF , E4 = d1/(3(2L− 1)(2L+ 3)). The last two terms involving E5 and E6, however,
do not. The disagreement appears in the terms related to the tensor interaction of the deuterons in the last lines of
Eqs. (3) and (5). The explicit expressions for E4–E6 are:

E4 = α2µeµd

me

2mp

[ 〈vL‖r−5
1 (r21δij − 3r1ir1j)‖vL〉

〈L‖2L2δij − 3(LiLj+LjLi)‖L〉
+ (1 → 2)

]
,

E5 = α2

(
µdme

2mp

)2 〈vL‖r−5
12 (δijr

2
12 − 3r12ir12j)‖vL〉

〈L‖2L2δij − 3(LiLj+LjLi)‖L〉
,

E6 =
Qd

2

[ 〈vL‖r−5
1 (δijr

2
1 − 3rirj)‖vL〉 − 〈vL‖r−5

12 (δijr
2
12 − 3r12ir12j)‖vL〉

〈L‖L2δij − (3/2)(LiLj+LjLi)‖L〉
+ (1 → 2)

]
,

(12)

where 〈v′L′‖ . . . ‖vL〉 denote reduced matrix elements in the basis of nonrelativistic wave functions ψ(NR)vLLz , while

〈L‖2L2δij − 3(LiLj+LjLi)‖L〉 = −2
√
L(L+1)

√
(2L−1)(2L+1)(2L+3).

is a reduced matrix element in the basis of the representation (L) of su(2) (see Eqs. (7),(9)). The three coefficients
depend on two spatial integrals and thus may be easily related to each other. To complete the comparison with [11]
we also mention that the second-order tensors in the last two lines of Eq. (11) cannot be reduced to the form used
in Eq. (10) of Ref. [11]. The effective Hamiltonian of [11] does not connect the states with I = 0 and 2, while the
last two terms in Eq. (11) have nonzero matrix elements connecting the ”pure state” vectors of Eq. (9) with different
total nuclear spin.
In first order of perturbation theory the wave functions of D+

2 are linear combinations of the basis set (8):

Ψ(vL)IFJJz =
∑

I′F ′

β
(vL)IFJ

I′F ′ Ψ
(vL)I′F ′JJz

0 , (13)

where the constant amplitudes β
(vL)IFJ

I′F ′ and the hyperfine shifts ∆E(vL)IFJ are the eigenvectors and eigenvalues of
the matrix of Heff in the basis of pure states (9):

∑

I′′F ′′

H
eff(vL)J
I′F ′,I′′F ′′ β

(vL)IFJ

I′′F ′′ = ∆E(vL)IFJβ
(vL)IFJ

I′F ′ . (14)
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Similar to H+
2 , symmetry with respect to exchange of the identical nuclei imposes restrictions on the allowed values

of I in the summation in Eqs. (13), (14); for Σg states, in particular, I must satisfy (−1)L+I = 1. As a result, in H+
2 ,

in first order of perturbation theory, I turns out to be an exact quantum number [10]. This is not the case for D+
2 ,

however, where both values I = 0 and I = 2 are allowed for even values of L, although their mixing is weak. Still,
a few of the hyperfine states of D+

2 are “pure states” with no mixing and all quantum numbers exact; these are the
states with I = 1, F = 3/2, J = L ± F (for odd L), the states with I = 2, F = 5/2, J = L ± F (for even L ≥ 2),
as well as the states with L = 0 and either I = 0, J = F = 1/2 or I = 2, J = F = I ± 1/2. The “stretched” states
with F = I +1/2, J = L+F , and Jz = ±J , of significant experimental interest because their Zeeman shift is strictly
linear in the magnetic shift in first order of perturbation theory [15], are a sub-class of the “pure” states listed above.
The hyperfine energy ∆E ≡ ∆E(vL)IFJ of the “pure” states is simply expressed in terms of the coefficients of the
effective spin Hamiltonian as follows:

∆E(vL)IFJ =
1

2

(
E3 + L(E1 + 2E2 + (2L− 1)(E6 − 2E4 − 2E5))

)
, for I = 1, F = 3/2, J = L+ F, odd L;

∆E(vL)IFJ =
1

2

(
E3 − (L+ 1)(E1 + 2E2 + (2L+ 3)(E6 − 2E4 − 2E5))

)
, for I = 1, F = 3/2, J = L− F, odd L ≥ 3;

∆E(vL)IFJ = E3 + L(E1/2 + 2E2 − (2L− 1)(2E4 + 2E5 + E6)), for I = 2, F = 5/2, J = L+ F, even L ≥ 2;

∆E(vL)IFJ = E3 − (L+ 1)(E1/2 + 2E2 + (2L+ 3)(2E4 + 2E5 + E6)), for I = 2, F = 5/2, J = L− F, even L ≥ 4;

∆E(v0)0FJ = 0 for J = F = 1/2,

∆E(v0)2FJ = −3E3/2 for J = F = 3/2,

∆E(v0)2FJ = E3 for J = F = 5/2.

C. Numerical results

The numerical results of the present work were obtained using the non-relativistic wave functions Ψ(NR)vLLz of
D+

2 , calculated with high numerical precision in the variational approach of Ref. [16]. Throughout the calculations

the CODATA18 values [17] of fundamental constants were used for md/mp, µe, and µd, while Qd = 0.285783 fm2

was taken from [18]. Table II gives the values of En, n = 1, . . . , 6 for the lower ro-vibrational states of D+
2 ; the

values for all ro-vibrational states (vL) with v ≤ 10 and L ≤ 4 can be found in the electronic supplement. The
theoretical uncertainty of En is due to the neglected contribution from QED and relativistic effects of order O(meα

6)
and higher that are not accounted for by the Breit-Pauli Hamiltonian and is estimated to be fractionally of order
O(α2) ∼ 0.5× 10−4; the numerical uncertainty related to numerical integration etc. is smaller. In Table II we list the
numerical values of En, n = 1, . . . , 6 with 6 significant digits to avoid rounding errors in further calculations.

The hyperfine energies ∆E(vL)IFJ and the amplitudes β
(vL)IFJ

I′F ′ of the states from the hyperfine structure of the
lower excited states, calculated using Eqs. (10), (11), and (14), are given in Tables III and IV. The results for the
higher excited states with v up to 10 or L up to 4 are available in the electronic supplement.
In the lower ro-vibrational states of D+

2 the dominating term of the Breit-Pauli Hamiltonian (3-5) is the contact
spin-spin interaction between the electron and the nuclei; this can be recognized by comparing the value of E3 with
the other coefficients of the effective spin Hamiltonian Heff (11), given in Table II and the electronic supplement. The
contribution to ∆E(vL)IFJ of the E3-term alone is (E3/2)(F (F + 1)− I(I + 1)− 3/4); similar to H+

2 it qualitatively
determines the shape of the hyperfine level structure (see Fig. 1), and for L = 0 this is the only contribution to the
hyperfine energy. The typical separation between hyperfine levels of D+

2 with different values of F or I is of the order
of E3 ∼ 102 MHz. It is significantly smaller than the GHz separation in H+

2 or HD+ because of the smaller magnetic
dipole moment of the deuteron µd as compared with µp. For all three molecular ions the separation between states
with ∆J = ±1 is of the order of 10 MHz.
The fractional uncertainty of ∆E(vL)IFJ is estimated to be of fractional order O(α2) ≃ 0.5× 10−4, same as for the

coefficients En of Heff . For hyperfine states with shifts of the order of 100MHz the theoretical uncertainty amounts
to the order of 5 kHz. For states with the smallest shifts (≃ 20 MHz, in which the influence of the coefficient E3 is
comparatively small), the uncertainties are of order 1 kHz.
Comparison of our results for ∆E(vL)IFJ with the results of Ref. [11] shows that for the majority of the considered

hyperfine states the difference is within α2
∣∣∆E(vL)IFJ

∣∣, although for a number of cases (e.g. the state (vLIFJ) =

(011 3
2
1
2 ), see Table I) it exceeds the uncertainty explicitly indicated in [11]. We attribute this to the incorrect form

of the effective spin Hamiltonian used in [11].
Zhang et al. [11] and earlier Babb [23] raised the interesting question about the possibility of determining Qd

from the hyperfine structure of D+
2 ; there is now an intense discussion on its actual value. Recently, Alighanbari et
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v L E1 E2 E3 E4 E5 E6

0 0 142.533
1 0 139.837
2 0 137.286
3 0 134.873
4 0 132.593
0 1 21.4599 −3.21518[−3] 142.448 1.32980 −4.71443[−4] 5.67068[−3]
1 1 20.5231 −3.12947[−3] 139.756 1.26978 −4.57403[−4] 5.66924[−3]
2 1 19.6183 −3.04185[−3] 137.209 1.21191 −4.43279[−4] 5.64719[−3]
3 1 18.7423 −2.95244[−3] 134.799 1.15600 −4.29061[−4] 5.60575[−3]
4 1 17.8923 −2.86128[−3] 132.522 1.10187 −4.14738[−4] 5.54600[−3]
0 2 21.3955 −3.20207[−3] 142.278 3.15886[−1] −1.11799[−4] 1.34038[−3]
1 2 20.4612 −3.11645[−3] 139.594 3.01623[−1] −1.08462[−4] 1.34003[−3]
2 2 19.5586 −3.02901[−3] 137.054 2.87871[−1] −1.05106[−4] 1.33480[−3]
3 2 18.6847 −2.93977[−3] 134.652 2.74583[−1] −1.01728[−4] 1.32498[−3]
4 2 17.8368 −2.84875[−3] 132.382 2.61720[−1] −9.83254[−5] 1.31082[−3]
0 3 21.2995 −3.18256[−3] 142.025 1.46902[−1] −5.18607[−5] 6.18729[−4]
1 3 20.3688 −3.09714[−3] 139.353 1.40266[−1] −5.03083[−5] 6.18561[−4]
2 3 19.4696 −3.00991[−3] 136.824 1.33867[−1] −4.87468[−5] 6.16135[−4]
3 3 18.5989 −2.92092[−3] 134.432 1.27684[−1] −4.71753[−5] 6.11585[−4]
4 3 17.7541 −2.83015[−3] 132.173 1.21697[−1] −4.55926[−5] 6.05027[−4]
0 4 21.1727 −3.15685[−3] 141.691 8.54566[−2] −3.00678[−5] 3.56385[−4]
1 4 20.2467 −3.07169[−3] 139.033 8.15938[−2] −2.91641[−5] 3.56285[−4]
2 4 19.3519 −2.98476[−3] 136.519 7.78684[−2] −2.82552[−5] 3.54880[−4]
3 4 18.4855 −2.89608[−3] 134.142 7.42682[−2] −2.73407[−5] 3.52246[−4]
4 4 17.6446 −2.80567[−3] 131.896 7.07820[−2] −2.64197[−5] 3.48452[−4]

TABLE II: Coefficients of the effective spin interaction Hamiltonian of Eq. (11) for the lower ro-vibrational states of D+
2 with

L ≤ 4, v ≤ 10, in MHz. The number in brackets denote powers of ten: a[b] = a × 10b. Note that for L = 0 all coefficients but
E3 are zero.

al. [22] determined Qd with an uncertainty of 1.5 % from the hyperfine spectrum of a pure rotational transition of
HD+. However, the most precise determination so far is from a comparison of experiment and theory for the neutral
hydrogen molecules [18–20]. Their stated uncertainties, ranging from 1 × 10−4 to 8 × 10−4, are so small that it is
worthwhile to perform an independent measurement, using the molecular hydrogen ion HD+ or D+

2 .
As a matter of principle, the determination of Qd with D+

2 can only reach a fractional uncertainty equal to the
fractional uncertainty of the relevant coefficient E6. Here, we have calculated it to a fractional uncertainty of order α2,
as was done for the relevant coefficient E9 for HD+. The use of the variational non-relativistic wave functions of D+

2

[16] eliminates the uncertainties from neglected non-adiabatic effects and therefore already represents an important
and necessary step towards a new determination of Qd.
In the future, a calculation of the coefficients of Heff could be performed by taking into account the QED corrections

of order O(meα
6) and higher, as was already performed for H+

2 [10]. This would represent a further significant step.
Furthermore, we show in the rightmost column of Tables III and IV the (numerically calculated) derivatives of the

hyperfine energies with respect to the electric quadrupole moment of the deuteron Qd. Note that while the coefficient
E6 decreases substantially when L goes from 1 to 3, the largest sensitivities among the hyperfine states actually
slightly increase. Relevant for the determination of Qd are the differences of the sensitivities of upper and lower state
of a transition. Some of these are given in Table VI. It can be seen from the largest differences (≃ 100 kHz fm−2) that
the experimental and theoretical uncertainties have to be on the order 3 Hz or less, in order to match the present
uncertainty of Qd.
However, an additional issue is the theoretical uncertainty of the dominant hyperfine hamiltonian coefficients

E1, E3, E4. As mentioned above, it can lead to absolute uncertainties of the order of 2 kHz for certain favorable
hyperfine transition components, i.e. comparable to E6 itself, and significantly more for others. An approach to
overcome these uncertainties, at least to a certain degree, has been implemented in Ref. [22].
Note that the off-diagonal elements of the matrix βIFJ

I′F ′ (see Eq. (13)) are small, i.e. the mixing of states with
different values of I or F is weak. This justifies our choice of the angular momentum coupling scheme, and allows
to use in estimates of the characteristics of D+

2 (except for the hyperfine shifts) the approximation of pure states
βIFJ
I′F ′ = δF ′F δI′I . In calculations of the hyperfine energies a neglect of the F -mixing induces a fractional error of the

order of half of a percent while the I-mixing contributes below the level of 10−8 and is of no practical importance.
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I F J ∆Ehfs/h βIFJ
1,1/2 βIFJ

1,3/2

(

d∆Ehfs/dQd

)

/h

v = 0, L = 1
1 1/2 3/2 -146.999 0.99776 -0.06688 2.78
1 1/2 1/2 -136.493 0.99673 -0.08075 -10.97
1 3/2 1/2 47.916 0.08075 0.99673 60.58
1 3/2 3/2 70.351 0.06688 0.99776 -42.47
1 3/2 5/2 80.624 0.00000 1.00000 9.92

v = 1, L = 1
1 1/2 3/2 -144.085 0.99787 -0.06524 2.72
1 1/2 1/2 -134.026 0.99692 -0.07838 -10.66
1 3/2 1/2 47.564 0.07838 0.99692 60.25
1 3/2 3/2 69.012 0.06524 0.99787 -42.39
1 3/2 5/2 78.870 0.00000 1.00000 9.92

v = 2, L = 1
1 1/2 3/2 -141.325 0.99798 -0.06356 2.64
1 1/2 1/2 -131.698 0.99711 -0.07598 -10.30
1 3/2 1/2 47.251 0.07598 0.99711 59,70
1 3/2 3/2 67.746 0.06356 0.99798 -42.16
1 3/2 5/2 77.202 0.00000 1.00000 9.88

v = 0, L = 3
1 1/2 7/2 -157.925 0.98895 -0.14826 7.53
1 1/2 5/2 -134.446 0.98227 -0.18749 -16.39
1 3/2 3/2 23.151 0.00000 1.00000 3.87
1 3/2 5/2 54.118 0.18749 0.98227 6.65
1 3/2 7/2 80.653 0.14826 0.98895 -40.01
1 3/2 9/2 100.754 0.00000 1.00000 16.24

v = 1, L = 3
1 1/2 7/2 -154.445 0.98944 -0.14497 7.38
1 1/2 5/2 -131.922 0.98324 -0.18230 -15.94
1 3/2 3/2 23.914 0.00000 1.00000 38.96
1 3/2 5/2 53.336 0.18230 0.98324 6.20
1 3/2 7/2 78.775 0.14497 0.98944 -39.85
1 3/2 9/2 98.122 0.00000 1.00000 16.23

v = 2, L = 3
1 1/2 7/2 -151.139 0.98992 -0.14161 7.20
1 1/2 5/2 -129.544 0.98421 -0.17702 -15.42
1 3/2 3/2 24.678 0.00000 1.00000 38.81
1 3/2 5/2 52.614 0.17702 0.98421 5.72
1 3/2 7/2 76.992 0.14161 0.98992 -39.54
1 3/2 9/2 95.605 0.00000 1.00000 16.17

TABLE III: Hyperfine structure of the lower ro-vibrational states for odd values L = 1, 3. Listed are: the quantum numbers J ,

I , and F , the hyperfine energy ∆Ehfs = ∆E(vL)IFJ/h (in MHz), the amplitudes β
(vL)IFJ

I′F ′ of the spin wave function, and the

derivative h−1 d∆Ehfs/dQd (in kHz fm−2). The stretched states are typed in boldface.

III. ELECTRIC QUADRUPOLE TRANSITIONS

A. Hyperfine structure of the E2 spectra in homonuclear molecular ions

The evaluation of the electric quadrupole transition spectrum of D+
2 follows closely the procedure described in

details in [10]; we shall highlight the points that are specific for the D+
2 molecule, and also take the opportunity to

refine some of the definitions given there. The use of dimensional SI units is restored in the rest of the paper.

Similar to Eqs. (5)-(7) of [10], we denote by H
(E2)
int the terms in the interaction Hamiltonian of D+

2 with a monochro-
matic electromagnetic plane wave, which are responsible for the electric quadrupole transitions. We take the vector
potential in the form A(R, t) = (−i/ω)

(
E0 e

i(k.R−ωt) −E∗
0 e

−i(k.R−ωt)
)
, where k is the wave vector, ω = c|k| is the

circular frequency, and E0 – the amplitude of the oscillating electric field,
The E2 transition matrix element between the initial |i〉 = |(vL)IFJJz〉 and final |f〉 = |(v′L′)I ′F ′J ′J ′

z〉 hyperfine



8

I F J ∆Ehfs/h βIFJ
0,1/2 βIFJ

2,3/2 βIFJ
2,5/2

(

d∆Ehfs/dQd

)

/h

v = 0, L = 0
2 3/2 3/2 -213.800 0.00000 1.00000 0.00000 0.00000
0 1/2 1/2 0.000 1.00000 0.00000 0.00000 0.00000
2 5/2 5/2 142.533 0.00000 0.00000 1.00000 0.00000

v = 1, L = 0
2 3/2 3/2 -209.756 0.00000 1.00000 0.00000 0.00000
0 1/2 1/2 0.000 1.00000 0.00000 0.00000 0.00000
2 5/2 5/2 139.837 0.00000 0.00000 1.00000 0.00000

v = 0, L = 2
2 3/2 7/2 -226.255 0.00000 0.99852 -0.05446 -22.25
2 3/2 5/2 -216.433 0.00004 0.99669 -0.08128 51.39
2 3/2 3/2 -202.716 -0.00012 0.99664 -0.08194 5.06
2 3/2 1/2 -190.986 0.00000 0.99863 -0.05238 -66.45
0 1/2 3/2 -32.093 1.00000 0.00012 0.00006 0.01
0 1/2 5/2 21.395 1.00000 -0.00002 0.00019 -0.02
2 5/2 1/2 102.515 0.00000 0.05238 0.99863 -81.29
2 5/2 3/2 117.107 -0.00007 0.08194 0.99664 -33.21
2 5/2 5/2 135.572 -0.00019 0.08128 0.99669 26.03
2 5/2 7/2 151.994 0.00000 0.05446 0.99852 50.39
2 5/2 9/2 159.864 0.00000 0.00000 1.00000 -28.14

v = 1, L = 2
2 3/2 7/2 -221.646 0.00000 0.99858 -0.05318 -22.19
2 3/2 5/2 -212.213 0.00004 0.99686 -0.07921 51.32
2 3/2 3/2 -199.097 -0.00012 0.99682 -0.07963 4.92
2 3/2 1/2 -187.921 0.00000 0.99871 -0.05076 -66.51
0 1/2 3/2 -30.692 1.00000 0.00013 0.00007 0.01
0 1/2 5/2 20.461 1.00000 -0.00002 0.00019 -0.02
2 5/2 1/2 101.558 0.00000 0.05076 0.99871 -81.19
2 5/2 3/2 115.469 -0.00008 0.07963 0.99682 -33.07
2 5/2 5/2 133.118 -0.00019 0.07921 0.99686 26.07
2 5/2 7/2 148.851 0.00000 0.05318 0.99858 50.33
2 5/2 9/2 156.416 0.00000 0.00000 1.00000 -28.13

v = 2, L = 2
2 3/2 7/2 -217.273 0.00000 0.99865 -0.05189 -22.05
2 3/2 5/2 -208.218 0.00004 0.99702 -0.07710 51.07
2 3/2 3/2 -195.684 -0.00012 0.99701 -0.07728 4.76
2 3/2 1/2 -185.041 0.00000 0.99879 -0.04913 -6.63
0 1/2 3/2 -29.338 1.00000 0.00013 0.00007 0.01
0 1/2 5/2 19.559 1.00000 -0.00002 0.00019 -0.02
2 5/2 1/2 100.687 0.00000 0.04913 0.99879 80.80
2 5/2 3/2 113.941 -0.00008 0.07728 0.99701 -32.80
2 5/2 5/2 130.803 -0.00019 0.07710 0.99702 26.02
2 5/2 7/2 145.870 0.00000 0.05189 0.99865 50.07
2 5/2 9/2 153.139 0.00000 0.00000 1.00000 -28.02

TABLE IV: Hyperfine structure of the lower ro-vibrational states for even values L=0, 2. Listed are: the quantum numbers J ,

I , and F , the hyperfine energy ∆Ehfs = ∆E(vL)IFJ/h (in MHz), the amplitudes β
(vL)IFJ

I′F ′ of the spin wave function, and the

derivative h−1 d∆Ehfs/dQd (in kHz fm−2). The stretched states are typed in boldface. Note that the values of βIFJ
0,1/2, I =0,

F =1/2, L=2 are strictly less than 1 but appear as 1.00000 due to rounding to 5 significant digits. On the contrary, ∆Ehfs for
I=0, F =J=1/2 is strictly zero.

states of D+
2 is

〈Ψ(v′L′)I′F ′J′J′

z |H(E2)
int |Ψ(vL)IFJJz〉 = i

3c
ωNR |E0|×

(
e−iωt〈Ψ(v′L′)I′F ′J′J′

z | T̂ (2)
ij Q

(2)
ij |Ψ(vL)IFJJz〉+ eiωt〈Ψ(v′L′)I′F ′J′J′

z | T̂ (2)∗
ij Q

(2)
ij |Ψ(vL)IFJJz〉

)
,

(15)

where ωNR = (E(NR)v′L′ − E(NR)vL)/h̄ is the transition circular frequency in the non-relativistic approximation, the
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asterisk denotes complex conjugation, and the tensor of the electric quadrupole transition operator is defined as

Q
(2)
ij =

1

2

∑

α

Zαe
(
3RαiRαj − δij R

2
α

)
, (16)

the summation here is over the constituents of D+
2 (α = 1, 2 referring to nuclei 1 and 2, and α = 3 labeling the

electron), Zαe is the corresponding electric charge. T̂ (2) is a tensor of rank 2 with Cartesian components

T̂
(2)
ij =

1

2
(k̂iǫ̂j + k̂j ǫ̂i), k̂ · ǫ̂ = 0, (17)

where k̂ = k/|k|, and ǫ̂ is a unit vector of polarization, E0 = ǫ̂ |E0|. The Einstein’s convention for summation over
repeated pairs of indices of cartesian components of vectors and tensors is assumed in Eq. (15) and further on.
To switch from Cartesian to cyclic coordinates and back for the symmetric tensor operators of rank 2, we use a

convention: Q
(2)
0 = Q

(2)
zz , that implies

T
(2)
ij Q

(2)
ij =

3

2

∑

q

(−1)qT (2)
q Q

(2)
−q =

3

2

(
T (2) ·Q(2)

)
.

Note that, in a general case of elliptic polarization, the vector ǫ̂, and tensor T̂ (2) are complex. The matrix elements

of the scalar product T̂ (2) ·Q(2) in Eq. (15) have the form

〈Ψ(v′L′)I′F ′J′J′

z |T̂ (2)
ij Q

(2)
ij |Ψ(vL)IFJJz〉 = 3

2

√
2J+1 ×

∑

q

T̂ (2)q C
J′J′

z

JJz ,2q

[
∑

I1F1

(−1)J+L+F1

{
L F1 J
J ′ 2 L′

}
β
(vL)IFJ

I1F1
β
(v′L′)I′F ′J′

I1F1

]
〈v′L′‖Q(2)‖vL〉, q = J ′

z−Jz,

(18)

and similar for the conjugate one, where 〈v′L′‖Q(2)‖vL〉 are the reduced matrix elements of Q(2). The Rabi frequency
for the transition |i〉 → |f〉 is expressed in terms of these matrix elements as follows

Ωif =
ωif |E0|
3h̄c

〈Ψ(v′L′)I′F ′J′J′

z |T̂ (2)
ij Q

(2)
ij |Ψ(vL)IFJJz〉 (19)

where ωif = (E(v′L′)I′F ′J′ − E(vL)IFJ)/h̄. Note that for general polarization Ωif is complex. The probability per
unit time Wif for the transition |i〉 → |f〉, stimulated by the external electric field with amplitude E0, oscillating
with frequency ω and propagating along k, may be expressed in terms of the Rabi frequency as follows: Wif =
2π(δ(ω − ωif ) + δ(ω + ωif ))|Ωif |2. We shall put it in the factorized form used in Eq. (18) of [10]:

Wif = WNR(v′L′; vL)Whfs((v′L′)I ′F ′J ′; (vL)IFJ)Wpol(J ′J ′

z; Jz). (20)

The first factor, WNR(v′L′; vL), is the rate of stimulated E2 transitions in D+
2 in the non-relativistic (spinless)

approximation, averaged over the initial and summed over the final angular momentum projections Lz, L
′
z

WNR(v′L′; vL) =
πω2

if

ε0c3h̄
2

1

15(2L+ 1)

∣∣∣〈v′L′‖Q(2)‖vL〉
∣∣∣
2

Ī, Ī =

∫
dω I(ω)gif (ω), (21)

where I(ω) is the spectral density of the external (laser) field energy flux, and gif (ω) is the transition line spectral
profile. The factor

Whfs((v′L′)I ′F ′J ′; (vL)IFJ) = (2L+1)(2J ′+1)

(
∑

I1F1

β
(v′L′)I′F ′J′

I1F1
β
(vL)IFJ

I1F1
(−1)J+F1

{
L F1 J
J ′ 2 L′

})2

, (22)

describes the intensity of the individual hyperfine component IFJ → I ′F ′J ′ of the transition line (vL) → (v′L′).
Because of the weak mixing of the pure states in Eq. (13) (see Tables III,IV) a good approximation for the intensity

of the strong (favored) transitions is to assume that β
(vL)IFJ

I′F ′ ≈ δI′IδF ′F that leads to

Whfs((v′L′)IFJ ′; (vL)IFJ) ≈ (2L+1)(2J ′+1)

{
L F J
J ′ 2 L′

}2

. (23)



10

The weak (unfavored) transitions are forbidden in this approximation.
Finally

Wpol(J ′J ′

z ; JJz) =
15(2J + 1)

2J ′ + 1

(
C

J′J′

z

JJz ,2q

)2 ∣∣∣T̂ (2)
q

∣∣∣
2

, q = J ′

z − Jz, (24)

is related to the intensity of the Zeeman components of a hyperfine transition line with different values of the magnetic
quantum numbers Jz, J

′
z. Wpol(J ′J ′

z; JJz) is normalized with the condition

1

2J+1

∑

Jz;J′

z

Wpol(J ′J ′

z, JJz) = 1. (25)

Note that compared with Eqs. (20)-(21) of Ref. [10], the factor (2J+1) has now been moved from Whfs to Wpol. In
absence of external magnetic field or in case of spectral resolution insufficient to distinguish the Zeeman components,
the rate W1 of excitation of an individual hyperfine component Jz to any of the Zeeman states J ′

z is independent
of Jz, and using Eqs. Eq. (20),(25) is reduced to W1 = WNR(v′L′; vL)Whfs((v′L′)I ′F ′J ′; (vL)IFJ). Similarly, the
product Whfs((v′L′)I ′F ′J ′; (vL)IFJ) Wpol(J ′J ′

z; JJz) satisfies the normalization condition

∑

I′F ′J′J′

z

1

nhfs(vL)

∑

IFJJz

Whfs((v′L′)I ′F ′J ′; (vL)IFJ)Wpol(J ′J ′

z ; JJz) = 1, (26)

where the sum is over the allowed values of I, I ′ with the same parity as L, and nhfs(vL) is the number of states in
the considered hyperfine manifold of the (vL) state:

nhfs(vL) =

{
6(2L+ 1) for odd L,

12(2L+ 1) for even L.
(27)

In case the hyperfine structure of the E2 transition line is not resolved, the excitation rate W2 from any of the nhfs(vL)
initial states to all final states is found by summing Wif of Eq. (20) over all final states and averaging over all initial
states. The result is W2 = WNR(v′L′; vL).

B. Laser polarization effects on the Zeeman structure of E2 spectra

Recent progress in the precision spectroscopy of hydrogen molecular ions [22] has allowed to resolve the Zeeman
structure of laser induced E1 transition lines. Encouraged by this, we consider in details the effects of the polarization
of the stimulating laser light on the Zeeman structure of E2 transition lines, as described by the factorWpol(J ′J ′

z ; JJz)
in (20). These effects have an impact on the intensity and not on the frequency of the E2 transitions; the calculations
of the Zeeman shift of the transition frequencies will be published elsewhere.

The cyclic components of the rank-2 irreducible tensor T̂ (2) (17) are expressed in terms of the cartesian components
as follows:

T̂ (2)±2 =

√
1

6

(
k̂xǫ̂x − k̂y ǫ̂y ∓ i

(
k̂xǫ̂y + k̂y ǫ̂x

))

T̂ (2)±1 =

√
1

6

(
∓
(
k̂xǫ̂z + k̂z ǫ̂x

)
+ i
(
k̂z ǫ̂y + k̂y ǫ̂z

))

T̂ (2)0 =
1

3

(
2k̂z ǫ̂z − k̂xǫ̂x − k̂y ǫ̂y

)
= k̂z ǫ̂z.

(28)

We have updated the normalization of these components as compared with Ref. [10], but have kept unchanged the
parametrization of the complex unit vector ǫ̂ = E0/|E0| pointing along the electric field amplitude E0. As in [10], we
denote by K the lab reference frame with z-axis along the external magnetic field B, by K ′ a reference frame with

z-axis along k̂, and take the cartesian coordinates (ǫ′x, ǫ
′
y, ǫ

′
z) of ǫ̂ in K ′ to be (cos θ, sin θ eiϕ, 0). Linear polarization of

the incident light is described by ϕ = 0; left/right circular polarization – by ϕ = ±π/2, θ = π/4; all other combinations
correspond to general elliptic polarization. Let (α, β, γ) be the Euler angles of the rotation that transforms K into
K ′, and denote by M(α, β, γ) the matrix relating the cartesian coordinates (ax, ay, az) and (a′x, a

′
y, a

′
z) of an arbitrary

vector a in K and K ′, respectively: ai =
∑

jMij(α, β, γ) a
′
j . (To avoid mismatch of M with M−1, note that, e.g.
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.

0 30 60 90 120 150 180
0,00

0,05

0,10

0,15

R
el

at
iv

e 
in

te
ns

ity
 W

po
l (J

'J
z+

;J
J z)

, degree

FIG. 3: Relative intensities Wpol(J ′J ′

z ; JJz) of the Zeeman components (JJz) = ( 1
2

1
2
) → (J ′J ′

z) = ( 3
2

1
2
+∆), ∆ = −2, . . . , 1,

stimulated with linearly polarized laser light, as function of θ − α for β = 45◦ (cf. Eq. (30)).

Mxz = − sinβ cos γ.) In this way, the absolute values of the components of T̂ in the lab frame K, appearing in
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Av′L′→vL (s−1)

(vL) (v′L′) ∆ENR/hc (cm−1)
∣

∣〈v′L′‖Q(2)‖vL〉
∣

∣/ea2
0 This work Pilon [8]

(00) (02) 88.053 1.608226 0.30665[−12] 0.30665[−12]
(00) (12) 1661.833 0.267274 0.20281[−07] 0.20281[−07]
(00) (22) 3171.009 0.019403 0.27036[−08] 0.27036[−08]
(00) (32) 4617.211 0.002497 0.29299[−09] 0.29298[−09]
(00) (42) 6001.881 0.000451 0.35543[−10]
(00) (62) 8591.673 0.000027 0.77727[−12]
(01) (11) 1575.973 0.311496 0.35215[−07] 0.35215[−07]
(01) (21) 3087.284 0.019765 0.40905[−08] 0.40905[−08]
(01) (31) 4535.575 0.002284 0.37384[−09] 0.37382[−09]
(01) (41) 5922.282 0.000367 0.36679[−10]
(02) (12) 1573.782 0.340448 0.25064[−07] 0.25064[−07]
(02) (22) 3082.958 0.021629 0.29183[−08] 0.29182[−08]
(02) (42) 5913.830 0.000403 0.26277[−10]
(03) (11) 1429.607 0.420823 0.39479[−07] 0.39479[−07]
(04) (12) 1369.684 0.522608 0.29490[−07]
(04) (24) 3067.885 0.027948 0.26415[−08]
(04) (32) 4325.062 0.001717 0.99945[−10] 0.99939[−10]
(06) (56) 7145.142 0.000129 0.26793[−11]
(11) (13) 140.894 2.379256 0.50287[−11] 0.50287[−11]
(11) (33) 3089.955 0.048979 0.10811[−07] 0.10811[−07]
(20) (42) 2912.431 0.052069 0.12725[−07]
(32) (64) 4135.286 0.024586 0.90959[−08]
(52) (54) 167.679 4.033412 0.26834[−10]

TABLE V: Nonrelativistic energies, ∆ENR = E(NR)v′L′

−E(NR)vL, reduced matrix elements, |〈v′L′||Q(2)||vL〉‖, of the electrical

quadrupole moments, Q(2), Eq. (16), Einstein coefficients, Av′L′→vL for selected E2 transitions between the ro-vibrational
states |vL〉 and |v′L′〉 of D+

2 , and, for comparison, the results of H.O. Pilon [8] when available.

Eq. (24) are parametrized with the four angles α, β, θ, and ϕ (the dependence on γ being cancelled):
∣∣∣T̂ (2)±2

∣∣∣
2

= − 1

12
sin4 β (1 + cos 2α cos 2θ + sin 2α sin 2θ cosϕ) +

1

6
sin2 β(1± cosβ sin 2θ sinϕ)

∣∣∣T̂ (2)±1
∣∣∣
2

=
1

12
+

1

24
cos 2β (1 − cos 2α cos 2θ) +

1

24
cos 4β (1 + cos 2α cos 2θ)−

1

12
(1 + 2 cos 2β) sin2 β sin 2α sin 2θ cosϕ± 1

6
cosβ cos 2β sin 2θ sinϕ

∣∣∣T̂ (2)0
∣∣∣
2

=
1

8
sin2 2β (1 + cos 2α cos 2θ + sin 2α sin 2θ cosϕ) (29)

This leads, for linear polarization (ϕ = 0), to
∣∣∣T̂ (2)±2

lin

∣∣∣
2

=
1

6
sin2 β (1− sin2 β cos2(θ − α))

∣∣∣T̂ (2)±1
lin

∣∣∣
2

=
1

12
(1 + cos 4β cos2(θ − α) + cos 2β sin2(θ − α))

∣∣∣T̂ (2)0
lin

∣∣∣
2

=
1

4
sin2 2β cos2(θ − α), (30)

and for left circular polarization (θ = π/4, ϕ = π/2)

∣∣∣T̂ (2)±2
left

∣∣∣
2

=
1

3
sin2 β

(
cos4 β

2

sin4 β
2

)

∣∣∣T̂ (2)±1
left

∣∣∣
2

=
1

3
(1∓ 2 cosβ)2

(
cos4 β

2

sin4 β
2

)

∣∣∣T̂ (2)0
left

∣∣∣
2

=
1

8
sin2 2β. (31)
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FIG. 4: Hyperfine structure of the |01〉 → |11〉 E2 vibrational transition line. The intensity of the hyperfine components Whfs

is plotted against the laser frequency detuning ∆ω/2π from spin-averaged transition frequency. The spectrum is dominated by
the “strong” (favored) components with ∆F = ∆I = 0, while the intensity of transitions between hyperfine states with different
F or I is suppressed by two orders of magnitude. The spectrum also includes a number of “weak” (unfavored) transitions with
∆F = +1, not shown on the plot.

For right circular polarization, described by θ = π/4, ϕ = −π/2, the values of |T̂ (2)q
right|2 are obtained from the above

expressions with the substitution
∣∣∣T̂ (2)q

right

∣∣∣
2

=
∣∣∣T̂ (2)−q

left

∣∣∣
2

.

One might expect the intensity of the Zeeman components of the E2-transition spectrum to depend — as in E1
transitions — on three parameters only: one related to the laser polarization, and two more describing the mutual

orientation of the external magnetic field B and the unit vectors k̂ and ǫ̂. In fact, Eqs. (30) and (31) show that this is
the case for circular and linear polarization only (when the difference θ−α appears as a single parameter) while in the
general case Wpol(J ′J ′

z; JJz) depends substantially on both angles α and θ. As an illustration, on Fig. 2 are plotted
the relative intensities of the Zeeman components |(vL)IFJ, Jz〉 = |(00)0 1

2
1
2 ,

1
2 〉 → |(12)0 1

2
3
2 ,

1
2 +∆〉,∆ = −2,−1, 0, 1

as functions of α for the randomly selected values β = 72◦, θ = 56◦, ϕ = 51◦. The plot shows that the measurement
of one or other individual Zeeman component of E2 transition lines may be substantially enhanced with appropriate
optimization of the set-up geometry using Eqs. (29)-(31). The rather sharp dependence of the intensity of the
individual Zeeman components on θ−α for linear polarization and fixed value of the angle β between B and the laser
propagation direction (cf. Eq. (30)) is shown in Fig. 3.

C. Numerical results

The rate WNR(v′L′; vL) of laser stimulated E2 transitions between the ro-vibrational states |vL〉 and |v′L′〉 of the
molecular ion D+

2 are expressed in Eq. (21) in terms of the reduced matrix elements 〈v′L′‖Q(2)‖vL〉 of the electric
quadrupole moment of D+

2 between these states. In the present work the reduced matrix elements were evaluated
using the non-relativistic wave functions of D+

2 calculated in the variational approach of Ref. [16]. The numerical
values needed for the evaluation of the rate of E2 transitions between a few selected ro-vibrational states are given in
Table V. For these transitions the table also lists the values of the Einstein’s coefficients Av′L′→vL, which are related
to the reduced matrix elements by

Av′L′→vL/t
−1
0 =

α5

15(2L+ 1)
((ENRv′L′ − ENRvL)/E0)5(〈v′L′‖Q(2)‖vL〉/ea20)2, (32)

where a0, t0 = a0/αc, and E0 = 2Ry are the atomic units of length, time, and energy. The comparison with the
values calculated by H. O. Pilon [8] with different methods for a partly overlapping selection of transitions shows good
agreement for the lower excited states, and indications of possible discrepancy of the order of 10−4 for the higher
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I F J J ′ ∆Ehfs (MHz) Whfs (d∆Ehfs/dQd)/h (kHz fm−2)

(vL) = (00) → (v′L′) = (02)
2 5/2 5/2 1/2 -40.018 0.06648 -81.29
0 1/2 1/2 3/2 -32.093 0.40000 0.01
2 5/2 5/2 3/2 -25.426 0.13244 -33.21
2 3/2 3/2 7/2 -12.456 0.39882 -22.25
2 5/2 5/2 5/2 -6.961 0.19868 26.03
2 3/2 3/2 5/2 -2.633 0.29802 51.38
2 5/2 5/2 7/2 9.461 0.26588 50.39
2 3/2 3/2 3/2 11.084 0.19866 5.06
2 5/2 5/2 9/2 17.331 0.33333 -28.14
0 1/2 1/2 5/2 21.395 0.60000 -0.02
2 3/2 3/2 1/2 22.814 0.09973 -66.45

(vL) = (00) → (v′L′) = (12)
2 5/2 5/2 1/2 -40.975 0.06649 -81.19
0 1/2 1/2 3/2 -30.692 0.40000 0.01
2 5/2 5/2 3/2 -27.065 0.13249 -33.07
2 5/2 5/2 5/2 -9.415 0.19875 26.07
2 3/2 3/2 7/2 -7.846 0.39886 -22.19
2 3/2 3/2 5/2 1.587 0.29812 51.32
2 5/2 5/2 7/2 6.318 0.26591 50.33
2 5/2 5/2 9/2 13.883 0.33333 -28.13
2 3/2 3/2 3/2 14.702 0.19873 4.92
0 1/2 1/2 5/2 20.461 0.60000 -0.02
2 3/2 3/2 1/2 25.879 0.09974 -66.51

(vL) = (00) → (v′L′) = (22)
2 5/2 5/2 1/2 -41.846 0.06651 -80.80
0 1/2 1/2 3/2 -29.338 0.40000 0.01
2 5/2 5/2 3/2 -28.592 0.13254 -32.80
2 5/2 5/2 5/2 -11.730 0.19881 26.02
2 3/2 3/2 7/2 -3.474 0.39892 -22.05
2 5/2 5/2 7/2 3.337 0.26595 50.07
2 3/2 3/2 5/2 5.582 0.29821 51.07
2 5/2 5/2 9/2 10.606 0.33333 -28.02
2 3/2 3/2 3/2 18.115 0.19881 4.76
0 1/2 1/2 5/2 19.559 0.60000 -0.02
2 3/2 3/2 1/2 28.759 0.09976 -66.32

(vL) = (01) → (v′L′) = (11)
1 3/2 5/2 1/2 -33.061 0.29815 50.33
1 3/2 3/2 1/2 -22.787 0.04784 102.72
1 3/2 5/2 3/2 -11.612 0.41821 -52.32
1 1/2 1/2 3/2 -7.593 0.98593 13.69
1 3/2 5/2 5/2 -1.754 0.28000 -0.00
1 3/2 3/2 3/2 -1.339 0.31375 0.07
1 1/2 1/2 1/2 -0.353 0.00000 -0.33
1 3/2 1/2 1/2 2.467 0.00000 0.31
1 1/2 3/2 3/2 2.914 0.49218 -0.06
1 3/2 3/2 5/2 8.519 0.62718 52.39
1 1/2 3/2 1/2 12.973 0.49305 -13.44
1 3/2 1/2 3/2 21.096 0.09564 -102.97
1 3/2 1/2 5/2 30.954 0.89412 -50.66

TABLE VI: The hyperfine shifts ∆Ehfs/h = (∆Ehfs(v′L′)IFJ′

− ∆Ehfs(vL)IFJ )/h, in MHz, the relative intensities Whfs =
Whfs((v′L′)IFJ ′; (vL)IFJ), and the derivative (d∆Ehfs/dQd)/h in (kHz fm−2) for the ”strong” (favored) components in the
hyperfine spectrum of two E2 transitions in D+

2 . The transitions between stretched states are shown in boldface.
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vibrational excitations. Juxtaposition with the analogous Table II of Ref. [10] shows that the rates of spontaneous
transitions in D+

2 are suppressed in comparison with H+
2 . This is mainly due to the smaller rotational and vibrational

excitation energies, related to the larger nuclear mass. In addition to Table V the electronic supplement to the present
paper gives the list of the reduced matrix elements for all E2 transitions between the ro-vibrational states with v ≤ 10
and L ≤ 4.

Further on, using the values of the amplitudes β
(vL)IFJ

I′F ′ , obtained by diagonalization of the effective spin Hamiltonian
matrix (14), we calculated the coefficients Whfs((v′L′)I ′F ′J ′; (vL)IFJ), in the expression (20) for the rate of the
individual hyperfine components. Fig. 4 illustrates the hyperfine structure of the E2 transition |01〉 → |11〉 and is
representative also for other ro-vibrational transitions.
The spectrum consists of “strong” (favored) components between hyperfine states with the same values of the

quantum numbers F and I spread over a range up to ±50 MHz around the center of gravity of the hyperfine
manifold, and “weak” components between states with ∆F 6= 0 or ∆I 6= 0 at a distance of a few hundred MHz.
The weak components are suppressed due to the relatively weak mixing of F and I in the eigenstate of the effective
spin Hamiltonian matrix. Compared to H+

2 , however, the suppression in D+
2 is less pronounced; the reason is that,

because of the smaller nuclear magnetic moment of the deuteron, the contact spin-spin interactions dominate to a
lesser extent thus leaving room for more F and I mixing.
Table VI lists the details of the “strong” (favored) hyperfine components of four selected E2 transition lines: one

rotational transition, two fundamental vibrational transitions, and one vibrational overtone transition. The electronic
supplement includes a table of the hyperfine structure of all E2 transition lines between the ro-vibrational states with
v ≤ 10 and L ≤ 4.

IV. CONCLUSION

The present paper reports a series of new theoretical results about the spectroscopy of the molecular ion D+
2 ,

including the most accurate to date calculations of the hyperfine structure of the lower excited ro-vibrational states
with vibrational and rotational quantum numbers v ≤ 10, L ≤ 4. The correct theoretical treatment of the hyperfine
structure is essential, considering that the experimental uncertainty of the measurement of the hyperfine structure has
already reached the 20 Hz level in one of the molecular hydrogen ions [22]. The paper also presents the first evaluation
of the hyperfine structure of the E2 ro-vibrational transitions, and a thorough consideration of the laser polarization
effects in the laser spectroscopy of the resolved Zeeman components of the hyperfine transition lines. The work closely
followed, but also further developed the formalism of Ref. [10] for the study of the electric quadrupole transition
spectrum of H+

2 . It is hoped that the present results open the perspective for performing precision spectroscopy
also on D+

2 in the near future. Apart from the well-known goals of mass ratio determination and test of QED, the
spectroscopy of D+

2 specifically opens the possibility of searching for an anomalous force between deuterons [24], and
the precision measurement of the electric quadrupole moment of the deuteron.
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The supplemental material includes the following five ASCII files with tables that were only partly presented in the
text of the paper:

1. d2plus-Heff.lst with the coefficients En, n = 1, . . . , 6 of the effective spin Hamiltonian Heff of D+
2 in the

ro-vibrational states with orbital momentum L = 1, . . . , 4 and vibrational quantum number v ≤ 10.

2. d2plus-hfs-evnL.lst with the hyperfine shift ∆E(vL)IFJ , the mixing coefficients β
(vL)IFJ

I′F ′ , and the derivative

of the hyperfine shift with respect to the deuteron electric quadrupole moment, d∆E(vL)IFJ/dQd, for states
with v ≤ 10 and even values of the orbital momentum L = 0, 2, 4.

3. d2plus-hfs-oddL.lst with the hyperfine shift ∆E(vL)IFJ , the mixing coefficients β
(vL)IFJ

I′F ′ , and the derivative

of the hyperfine shift with respect to the deuteron electric quadrupole moment, d∆E(vL)IFJ/dQd, for states
with v ≤ 10 and odd values of the orbital momentum L = 1, 3.

4. d2plus-E2-evnL.lst with the hyperfine shift ∆Ehfs, its derivative with respect to Qd, d∆Ehfs/dQd, and the
relative intensity Whfs = Whfs((v′L′)IFJ ′; (vL)iFJ) of the strong (favored) hyperfine components of the E2-
transition lines between states with v ≤ 10 and even values L ≤ 4.

5. d2plus-E2-oddL.lst with the hyperfine shift ∆Ehfs, its derivative with respect to Qd, d∆Ehfs/dQd, and
the relative intensity Whfs = Whfs((v′L′)IFJ ′; (vL)iFJ) of the strong (favored) hyperfine components of the
E2-transition lines between states with v ≤ 10 and odd values L ≤ 4.

The above ASCII files contain uniformly formatted lines without any special symbols. The data in each line are
separated by one or more spaces and appear in the order described below.

1. d2plus-Heff.lst
The file contains 55 lines. In each line are given the quantum numbers v and L (integers), and the six coefficients

En, n = 1, . . . , 6 in units of MHz.

2. d2plus-hfs-evnL.lst
Each of the 286 lines contains the description of one hyperfine component, as follows:

– the ordinal number of the line;
– the quantum numbers v and L (integers);
– the quantum numbers of the hyperfine component I, F , and J (printed as real numbers);
– the hyperfine shift ∆E(vL)IFJ/h, in MHz;

– the five expansion coefficients β
(vL)IFJ

I′F ′ ;

– the derivative d∆E(vL)IFJ/dQd, in kHz fm−2.

3. d2plus-Heff.lst
Same as d2plus-hfs-evnL.lst, with a total of 121 lines.

4. d2plus-E2-evnL.lst
For each allowed E2 transition (vL) → (v′L′) between rovibrational states with v, v′ ≤ 10 and even values of the

orbital momentum L,L′ ≤ 4, are given:

• a title line with the non-relativistic quantum numbers of the initial and final states in the form
” ( v, L)− > ( v′L′)” ;

• the characteristics of the strong (favored) hyperfine components |(vL)IFJ〉 → |(v′L′)IFJ ′〉 in increasing order

of the hyperfine shift ∆Ehfs = ∆E(v′
L

′)IFJ
′ −∆E(vL)IFJ , including:

– the quantum numbers I (integer), and F , J , J ′ (real);
– the hyperfine shift ∆Ehfs/h in MHz;
– the relative intensity Whfs((v′L′)IFJ ′; (vL)iFJ);
– the derivative d∆Ehfs/dQd, in kHz fm−2.

5. d2plus-E2-oddL.lst
Same as d2plus-E2-evnL.lst, but for the allowed E2 transitions between rovibrational states with v, v′ ≤ 10 and

odd values L,L′ = 1, 3.
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